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Abstract

This article presents the first endeavor to develop the differential quadrature element method for static solution of
three-dimensional elasticity equations of thick rectangular laminated composite plates. The domain decomposition
technique is employed to decompose a laminated plate into elements according to material layers. The differential
quadrature (DQ) method is then applied to each element where the material properties are continuous to form the
element weighting coefficient matrix and element force vector. The discretized element weighting coefficient matrices
and element force vectors are assembled together to form the global weighting coefficient matrix and global force vector
for the whole plate using connection conditions. The solution for the entire plate is obtained by solving the final al-
gebraic equation system. Detailed formulations and numerical procedures are presented and the convergence charac-
teristics of the method are investigated. The numerical results are then compared, where possible, with the analytical
solutions to verify the present solutions. Consequently, some new numerical results are computed and analyzed using
the present numerical method for laminated rectangular plates with different boundary conditions, which are not
solvable directly by the global DQ method. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Three-dimensional elasticity solution; Thick laminated composite plates; Differential quadrature element method; Static
analysis; Numerical method

1. Introduction

Three-dimensional elasticity analysis of plate problems has always been attractive for structural me-
chanics researchers. This is because three-dimensional solutions do not rely on any hypotheses concerning
the kinematics of deformation, and do not impose any restrictions on the plate thickness and, therefore, are
extremely useful in evaluating the accuracy of the approximate solutions such as various two-dimensional
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plate theories. In addition, the three-dimensional elasticity analysis can provide the physical characteristics,
which could not be otherwise predicted by the two-dimensional analysis. In solving the three-dimensional
elasticity equations of rectangular plates, quite a number of solution approaches have been proposed. One
would find the earlier research work of Pagano (1970), who studied the static bending of infinitely long and
finite size composite laminates under sinusoidal lateral loading using an analytical method. The elasticity
solutions were compared with the classical thin plate (CTP) theory solutions, and the limitations of the CTP
theory were pointed out in his work. Srinivas and Rao (1970) and Srinivas et al. (1970) presented a set of
complete analytical analyses on bending, buckling and free vibration of plates with both isotropic and
orthotropic materials. Based on the analysis of Srinivas and Rao (1970) and Srinivas et al. (1970), Wittrick
(1987) worked out a detailed analytical three-dimensional elasticity solution of simply supported plates for
eigenvalue problems of buckling and free vibration and for static deflections under sinusoidal lateral
loading. Hutchinson and Zillmer (1983) presented a series of solutions for the free vibration of a free
isotropic rectangular plate of finite dimensions. Leissa and Zhang (1983) solved the CFFF isotropic
rectangular plate. The notation CFFF denotes a rectangular plate with edge faces: x=0, y=0, x=a and
y = b having clamped (C), free (F), free (F) and free (F) boundary conditions, respectively. Liew et al. (1993,
1994a,b) presented a comprehensive investigation on frequency and mode shapes of SSSS, SCSC, SFSF
and CCCC rectangular isotropic plates based on three-dimensional Ritz formulations with orthogonal
polynomials. Wang and Tarn (1994) analyzed the bending of simply supported rectangular laminated plates
based on an asymptotic solution theory. It is evident that the three-dimensional solutions, available for
composite laminated plates with different boundary conditions, reported in the open literature are limited.

Recently, a newly developed numerical method, namely the differential quadrature (DQ) method, has
been applied to the elasticity solutions of the three-dimensional isotropic plate problems (Malik and Bert,
1998; Liew and Teo, 1998, 1999; Teo and Liew, 1999). This numerical method was first introduced to the
structural analysis field by Bert et al. (1988) and further exploited by Bert et al. (1989) for solving non-linear
equations of deflections of orthotropic plates. Since then, much research has been done on both the the-
oretical development and the engineering applications of the method. An excellent review article contrib-
uted by Bert and Malik (1996) has summarized a detailed literature list on both aspects of the DQ method.
It has been reported that the DQ method was able to rapidly compute an accurate solution of partial
differential equations by using only a few grid points in the respective solution domain and, therefore, has
the potential to become an alternative to the conventional numerical methods. However, the further ap-
plication of the DQ method has been greatly restricted by the drawback that it cannot be directly employed
to solve problems with discontinuities. To overcome this drawback, a lot of effort has been made to develop
the localized DQ method, namely the quadrature element method (QEM) and the differential quadrature
element method (DQEM), by combining the domain decomposition technique with the DQ method for
solving a variety class of structural problems having different discontinuities in the geometry, boundary
conditions and material properties (Striz et al., 1994, 1997; Chen et al., 1997; Han and Liew, 1996; Liu
et al., 1997; Wang and Gu, 1997; Liu and Liew, 1998, 1999a—c; Liu 1999, 2000). The differences between the
QEM and the DQEM have been elaborated in previous articles (Wang and Gu, 1997; Liu and Liew, 1999b;
Liu, 1999, 2000), and therefore will not be repeated here. Among these analyses, only one- and two-di-
mensional problems have been treated. No solutions have been reported for solving the three-dimensional
plate problems using the localized DQ method. This article represents the first attempt to develop the
numerical procedures of the DQEM for the three-dimensional elasticity analysis of laminated composite
plates by combining the global DQ method with the domain decomposition method. The detailed for-
mulations for the three-dimensional DQEM analysis for laminated plates and compatibility conditions
between elements are derived. The three-dimensional elasticity partial differential equations of the lami-
nated composite plate are not solvable directly by the global DQ method due to the discontinuities in
material properties on the interfacial layers. However, they can be solved by the present solution procedures
very easily. The detailed numerical procedures are given below.
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2. Mathematical formulations

Consider an N,-layer rectangular laminated composite plate with size a X b x ¢ as shown in Fig. 1. Each
layer consists of a homogeneous orthotropic material and has a uniform thickness. The properties of the
material are given in Table 1. The relative values of the moduli are the same in all the plies, i.e. (Cy; : Cp :
C33 : C12 : C13 : C23 : C66 . C55 . C44) are identical.

2.1. Equilibrium equations
The laminate can be decomposed into N, layer elements according to the layer number. For each ele-

ment, when not considering the body forces, the equations of equilibrium can be written in terms of dis-
placements in Cartesian coordinates as (Srinivas and Rao, 1970)

i 62 i 62 i az i ie 620 ) ie aZW
Clga T Cagpt gz ™ (Cu+ o) axdy (Circ) =0 (12)
LN Pu P P B 2w
(C;2 + Cﬁ;) s Ce P Czip + CZ‘pﬂL (sz + C44) oyoz =0, (1b)
. N\ Qu ; o\ 0% CPw o L w D
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Fig. 1. Configuration of a rectangular thick laminated plate with dimensions a X b X c.

Table 1
Properties of the orthotropic material in three-ply laminated plate

Cy/Cyy = 0.543103
C1»/Cyy = 0.23319

Cy3/Cyy = 0.098276
Css/Cyy = 0.159914
C33/Cyy = 0.530172
C13/Cyy = 0.010776
Ces/C11 = 0.262931
Cys/Cyy = 0.26681
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where u, v and w are displacements in the x, y and z directions, respectively; Cj, Cx,, Ct, Cfy, Cis, Cxs, Cy,
C% and Cg, are the nine elastic constants of the orthotropic material of layer i,.

The constitutive equations for the orthotropic material whose principal axes are parallel to the x, y and z
directions of the Cartesian coordinate system can be expressed as

0r = Clege + Clog, + Cle, (2a)
gy = Cle, + Clg, + Cre., (2b)
0. = Cler + Clgy + Ce, (2c)
Tyz = CZVW (2d)
T = Ci Yy (2¢)
Ty = CE Yy (2f)

where g,, g, and ¢, are the normal stresses in the x, y and z directions, and t,,, 7., and t,, are the shear
stresses in the x—y, x—z and the y—z planes respectively. ¢,, ¢, and ¢. are the normal strains in the x, y and z
directions, and y,,, 7,, and y,, are the shear strains in the y—z, x—z and the x—y planes, respectively. For small
strains, they can be expressed as follows:

) (3a)
& = 2—;7 (3b)
n=", (3¢)
b=+ g (34)
Ve = % + 66_217 (3e)
=22 ”

2.2. Boundary conditions

The boundary conditions at the four edge faces of plate where x =0, a and y =0, b are defined here as the
edge boundary conditions, whereas the boundary conditions at the lateral top and bottom surfaces of plate
are defined as the loading conditions as these are the conditions describing the magnitude of the uniformly
distributed pressure load, g.



F.-L. Liu | International Journal of Solids and Structures 37 (2000) 7671-7688 7675

The edge boundary conditions can be classified into the following three types:
Simply supported edge boundary condition (S')

Onx=0anda: o0,=0, v=0, w=0, (4a—)
ony=0and b: 0,=0, u=0 w=0. (5a—c)
Clamped edge boundary condition (C)

u=0, v=0, w=0. (6a—c)
Free edge boundary condition (F)

Onx=0anda: o0,=0, 1,=0, 7.=0, (7a—)
ony=0and b: 0,=0, 1,=0, 1,=0. (8a—c)

In two-dimensional plate analysis, such as using the classical plate theory or the shear deformation plate

theories, it does not matter whether the load is applied on only the top surface of the plate, or on both the
top and bottom surfaces of the plate as the deflection of plate is assumed to be independent of the z co-
ordinate. This is not true in the three-dimensional plate analysis. Here one needs to determine whether the
load is to be applied to the top surface or both the top and bottom surfaces. This gives rise to the following
two general categories of lateral surface loading conditions:

3.

Loading on the top surface (L)
Onz=0: 0.=¢q, 17.=0, 1,.=0, (9a—)

onz=c¢: 0,=0, 1,=0, 1,=0. (10a—)
Loading on the top and bottom surface (L")
Onz=0: o.=¢/2, 7.=0, 1,=0, (Ila—c)

onz=c¢: o0,=-¢q/2, 1,=0, 1,=0. (12a—)

Method of solution

3.1. Discretizations of equilibrium equations

Suppose that each layer element is further divided into N, X N, x N, grid points in the x, y, and z di-

rections, respectively. According to the three-dimensional differential quadrature formulations (Liew and
Teo, 1998), the equilibrium Egs. (1a—c) can be discretized into the following forms:

Cl‘ ZAzl U + C”Z mu,mk + C%ZCM Ujjn + (CZ‘ + Cl{)ZAzl Z im Vlmk

m=

z

N:

+ (€4 ) APS i =0, (13a)

=1 n=1

~

Ny

Ne
Cle + Cvlt Z ,([1 B jm Uik + Cle ZAll Uik + CIEZ jm Uik + Clt chn Vijn
=1

=1 m

(C+ CF) Z e (13b)
n=1
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x N: Ny Nz
(e o) S S+ (¢4 ) B e+ Y s
=1 n=1 m=1 n=1
() L 2)
+C8 B Wi+ C Y iy = 0, (13¢)
m= n=1

iv=1,2,3,....N,

where A", B" and C(r =1,2,3, ...,Nm; s =1,2,3, ...,Nm; m can be x, y and z) are the differential
quadrature weighting coefficients for the nth-order partial derivatives of u, v and w with respect to the
global coordinates x, y and z.

In matrix notation, Egs. (13a)—(13c) can be rewritten as

K°d® =f° (14)
in which K¢, d® and f* are defined as the element weighting coefficient matrix, element displacement vector
and element force vector, respectively, and

T
d° = [u1,1,1, UL, WL, U125, U112 W25 - - - UNG N, N UNYNVAN:,WNYNVAN:] . (15)

For the internal nodes of each layer element, f* is the null vector and K® is determined by Egs. (13a)-
(13c).

Similarly, by substituting Eqs. (3a)—(3f) into Egs. (2a)—(2f) and discretizing them, one can obtain the
stresses as follows:

N:
=Cjy ZA,I wi + Cis Z o Vink + C15 > Cly Wign, (16a)
n=1
- C;BZZAU Upjk + C;2ZBjn1 Uimk + Cl2€3zckn Wijns (16b)
— lesZAw i + cgng,m Uik 4 C Zc,m Win, (16¢)

=1 m=1

N;
- Cél(4 (Z kn Ul/” + ZB/m W’/”) ’ (16d)

N
—_ (z D34 w) (160
=1 =1

= Cl (Z o Uik + ZAzl U,jk> (16f)

=1

3.2. Discretizations of boundary conditions

The edge boundary conditions (4)—(8) and loading conditions (9)—(12) are discretized into the following
forms:
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o Simply supported edge boundary condition (S): For the edge faces x=0 and x=a,

Ny Ny N,
Clid Ay w+ Clay_Bulvine + Clyy_Cia/wipn =0, (17a)
=1 m=1 n=1
Uijk = 07 (17b)
o Clamped edge boundary condition (C)
u,-jk = 0, (lga)
Uijk = 07 (lgb)
Wijk = 0. (180)
o Free edge boundary condition (F): For the edge faces x=0 and x=aq,
X Nx 1 . N} 1 . Nz 1
Ci ZAI(-I T + Cly ZBﬁ‘m) Vimke + Cll%ZCIEn)WU" =0, (19a)
=1 m=1 =1
Ny Ny
> B+ > Ay vy =0, (19b)
m=1 =1
N Ne
Zczil)urﬁ/n + ZAEII "y = 0. (19¢)
n=1 =1
o Loading condition at the top surface (L) for z=0
I LA e
Cy ZAI(*])quk + CE%ZB}J Vimk + C;gZC,En)wi,-n = gy, (20a)
=1 m=1 n=1
N N,
> Colugu+ > A wy =0, (20b)
=1 =1
. N,
ol M — 0 )
Z kn Uijn + ZB/”’ Wimk = V. ( OC)
n=1 m=1
o Loading condition on the top surface (L) for z=c
. Nx 1 . N,"' 1 . N: 1
CEZAEI)”U’( + CE%ZB}m)vfmk + CQ%ZCI;)WU” =0, (21a)
I=1 m=1 n=1
N Ne
> Cidduin + YA wi =0, (21b)
n=1 =1

N: NV
> Ciaviin + DB Wi = 0. (21c)
n=1 m=1
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o Loading condition on the top and bottom surfaces (L) for z=0

Ny Ny Nz
i 1 o 1 i 1 4
C132A51 >”ljk + C23ZBj('m) Vimk + C33ZC1(m)Wijn = jja (22a)
=1 m=1 =1
N N
1 1
D Clwn+ Y A wi =0, (22b)
=1 =1
N. N,
ZC/E;)Ui/n + 2352 Wimie = 0. (22¢)
n=1 m=1
e Loading condition on the top and bottom surfaces (L') for z=c
Ny ( Ny 0 N: H q
i 1 ie 1 i ij
C132Ail)u1ﬂ€ + CBZB/m Vimk + C33ZC1(<17 Wijn = — 717 (23a)
=1 m=1 n=1
N: ) Ne .
ZC/En)uijn + ZAI(’I)WU/( = Oa (23b)
n=1 =1
N N,
ZC](;‘)U”" + ZBﬁIIn) Wimk = 0. (230)
n=1 m=1

3.3. Assembly of the differential quadrature layer elements and connection conditions

To obtain the final solution, the element weighting coefficient matrices, the element displacement vectors
and the element force vectors should be assembled into a global equation system for all the nodal points of
the laminate. To facilitate the assembling procedures, the following rules are used:

e For the internal nodes of each element, the element equilibrium Egs. (13a)—(13c) are assembled.

e For the boundary nodes on four side faces of plate, the edge boundary conditions (17)—(19) are assem-
bled.

e For the nodes on the top and bottom surfaces of plate, the loading conditions (20)—(23) are assembled.

e For the nodes at the interfacial layers of plate, the connection conditions are used.

The connection conditions for the interfacial nodes should include both the displacement compatibility
and the stress compatibility conditions. As the same global nodal number for each conjunction node on the
interfacial layers is used, the displacement compatibility conditions are satisfied automatically. Only the
stress compatibility conditions are needed. They can be obtained by introducing the equilibrium conditions
along plate thickness as follows:

(O-Z)Ie - (O—Z)[ﬁ—l =0, (24a)
(TXZ)le - (Tx2)19+1 =0, (24b)
(Tﬂ)/e - (‘C}Z)le-%—l =0, (24¢c)

l,=12,...,N,— 1.
Thus, the global matrix equation system for the entire laminated plate can be written as

Kd =F, (25)
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where K, d and F represent the overall weighting coefficient matrix, global displacement vector and global
force vector, respectively. The vector d is expressed as

d= [U17UI7W1,M27027W2,...,HN7UN7WN]T. (26)

Solving the final algebraic equation system by the ordinary linear equation system solver, the solutions
to the entire plate can be obtained.

4. Numerical results and discussion

In order to compare the present numerical results with the exact solutions in the open literature, the
three-ply laminated plate (0°/90°/0°) analyzed by Srinivas and Rao (1970) is considered. The top and
bottom plies are identical with /;/c = 0.1 and h,/c = 0.8. The grid points for each element employed in
computations are designated by the following cosine mesh patterns:

o) = % (1 — cos (;v;—_l);T>, (27)

i=1,2,3,....N,.

In Eq. (27), ©(i) can either be the x(i), y(i) or z(i) coordinate of the ith point considered and o can be x, y
and z.

To examine the validity of the proposed solution procedures, convergence studies are carried out first.
The loading condition L is considered. The convergence characteristics of the deflection and stresses at
selected locations of the laminated plate with increasing number of the grid points in each layer element are
presented for different boundary conditions in Tables 2-4.

Table 2
Convergence of deflections and stresses in simply supported three-ply laminated square plate under a uniform surface load ¢ on the top
surface (z=0)"

Grid size 5x5x%x5 Tx7Tx5 Ix9x%x5 11 x11x5 11 x11x7 Exact solution®
wC2, /(cq) ~156.900 ~158.648 -159.439 ~159.328 -159.309 -159.38
(a1)./q 67.4742 64.9974 65.7279 65.2895 65.2748 65.332
(a)s/a 49.2664 49.0303 48.6863 49.0004 49.0061 48.857
(@2)./q 4.92657 4.90967 4.87665 4.90772 4.90830 4.9030
(@2)s/a -4.91018 —4.87460 —4.84871 -4.86591 —4.86532 —4.8600
(@)./q -49.1021 —48.8466 —48.6018 —48.7689 —48.7631 —48.609
(@)s/a -67.2165 —64.7783 —65.1533 -65.0780 —65.0689 —65.083
(a1)./q 47.1082 44.5521 44.8929 44.6473 44.6434 43.566
(¢)s/a 35.3956 33.6793 33.3194 33.5360 33.5389 33.413
(a?),/q 3.53894 3.42846 3.40508 3.42368 3.42410 3.4995
(af‘f),,/q -3.59788 -3.38021 -3.35954 —3.37450 -3.37425 -3.3669
(0¥)./q -35.9813 -34.7192 —34.6418 —34.7467 —34.7442 -33.756
(0)s/q —47.4545 -43.8507 -43.9177 -43.9630 —43.9586 —43.908
(t)uilq —3.29900 -3.51343 —3.72254 —3.78258 -3.76553 -3.9285
(te:), /g -3.62353 —3.90401 —4.05594 —4.07543 —4.07177 —4.0959
(te) i/ -3.18372 —3.34061 -3.46163 —3.49465 —3.49443 -3.5154

dcfa=0.1,h/c=0.1,hy/c =0.8,C},/C} = 10, C}, and C}, are the elastic moduli of the first and second layers of the material in
the x direction; (%), and (d*),, i, = 1, 2 and 3, are the stress values of o, at the central point (x/a = y/b = 0.5) of the top and bottom
surfaces of the i,th layer material, respectively; (o*ff’), and (aff')b, i,= 1, 2 and 3, are the stress values of o, at the central point
(x/a =y/b = 0.5) of the top and bottom surfaces of the i.th layer material, respectively; and (z.),;, (7x.),, and (1), are the transverse
shear stresses at the upper interface, the mid-surface and the lower interface of the laminate at x/a= 0 and y/b= 0.5.

®Exact solutions given by Srinivas and Rao (1970).
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Table 3

Convergence of deflections and stresses in a three-ply laminated square SCSC plate under a uniform surface load ¢ on the top surface
(z=0)

Grid size S5x5x%x5 TxTx5 I9%x9x%x5 11 x11x5 11 x11x7
wC? /(cq) -106.024 -101.804 -104.275 —103.469 -103.415
(a"),/q 47.8921 422728 43.7427 427873 42.7541
(¢"),/q 34.0551 32.3745 31.4471 32.3364 32.3477
(), /q 3.38865 3.23486 3.14811 3.23571 3.23718
(@),/q -3.39123 -3.23976 -3.15583 -3.22973 —3.22987
(@),/q -34.0822 -32.5184 —31.7298 ~32.4306 —32.4265
(af)h/q —47.8203 —42.1325 -43.1392 —42.5731 —42.5416
(0,)./q 41.3896 37.1640 38.4688 37.4053 37.4056
(a1),/q 29.2163 27.6790 24.9288 26.6485 26.6816
(09),/4 2.76791 2.74428 2.52386 2.68380 2.69015
(@),/q ~2.78880 -2.78282 ~2.50467 ~2.66140 ~2.66548
(@*),/q -29.4377 -28.9297 —26.6109 -27.8289 -27.8201
(@))s/q —41.3575 —34.2781 —34.4301 -33.5710 -33.5321
(t)u/q —2.59360 —2.66991 —2.94589 —2.94908 -2.93023
(), /4 277728 -2.92628 -3.13197 -3.10158 ~3.09600
(t)i/q -2.47722 -2.50128 -2.68118 —2.66246 —2.66033

?The notations given here are all the same as those given in Table 2.

Table 4
Convergence of deflections and stresses in a three-ply laminated square CCCC plate under a uniform surface load ¢ on the top surface

(z=0y

Grid size S5x5x%x5 TxTx5 I9%x9x%x5 11 x11x5 11 x11x7
wC? /(cq) —84.6849 ~75.6037 ~79.8238 —78.1250 —78.0434
() /a 39.2136 28.8690 33.3172 29.8618 29.72826
(6),/q 23.3390 23.6721 19.5976 22.9850 23.0241
(62),/q 2.32049 2.36504 1.96118 2.29969 2.30388
(az),,/q -2.32539 ~2.36085 -1.97546 -2.28166 -2.28414
(03),/q —23.3894 -23.7275 -19.8575 —22.9368 —-22.9582
(a‘)b/q -39.1231 -28.8303 —32.7000 -29.7374 -29.6120
()),/q 33.2442 26.5759 28.9047 27.2324 27.1993
(¢))y/q 22.3573 20.2143 17.5925 19.4892 19.5166
(@),/q 2.11343 2.00170 177218 1.95982 1.96510
(a )s/4 —2.13451 —2.00696 —1.78946 -1.92392 -1.92626
(a}),/q —22.5805 -21.1553 -18.8329 —20.3360 -20.3285
(@)s/a —33.2037 —24.3384 —25.6457 —24.2224 —24.1599
(Tz)ui/ 4 -2.05831 —1.84365 —1.86983 -1.73185 -1.75765
(t)nlq -1.76017 —1.63401 —1.85550 -2.09861 —2.06440
(te)ula —1.90009 —1.59648 ~1.53955 —1.42634 ~1.40849

#The notations given here are all the same as those given in Table 2.

It can be seen from these tables that for all the cases considered here, the numerical results of the
normalized deflection and stresses at the selected points of the laminated plate converge rapidly with the
increase of the number of grid points in each layer element. In Table 2, it is observed that for a simply
supported three-ply laminated square plate with ¢/a = 0.1 and C},/C?, = 5.0, the convergent results with
maximum deviation error about 2.9% from the exact solutions are obtained when the grid size of each layer
element reaches 11 x 11 x 5. When the grid size of each layer element becomes 11 x 11 X 7, a convergence to
four significant figures can be achieved. The numerical results in Tables 3 and 4 show that the convergence
rates of the DQEM solutions for SCSC and CCCC boundary conditions are slightly slower than those for
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Table 6

Comparison studies for the deflections and stresses in simply supported three-ply laminated square plate under a uniform surface load
¢ on the top surface (z=0)*

Grid size (Ci/(Cri)a =1 (Cii/(Cii)a=5 (Ci/(Cri)2 =10

Present Exact® Present Exact® Present Exact®
wC2, /(cq) ~688.628 —688.58 -258.917 -258.97 -159.309 -159.38
(¢))/a 36.03953 36.021 60.34557 60.353 65.27481 65.332
(c")y/q 28.53919 28.538 46.69206 46.623 49.00605 48.857
(02)./a 28.56844 28.538 9.35157 9.3402 4.9083 4.9030
(02),/q -28.4691 -28.454 -9.29157 -9.2845 —4.86532 —4.8600
(0))/a -28.5195 —28.454 —46.5501 —46.426 —48.7631 —48.609
(6)),/4 -35.9519 -35.937 —60.163 —60.155 —65.0689 —65.083
() /a 22.77834 22.210 39.45876 38.491 44.64336 43.566
(0))s/a 17.69583 17.669 30.17466 30.097 33.53887 33.413
(0°),/4 17.96263 17.669 6.15493 6.1607 3.4241 3.4995
(09),/4 ~17.6563 -17.631 —6.06803 —6.0574 —3.37425 -3.3669
(@),/q -17.9162 -17.631 -31.1818 -30.322 -34.7442 -33.756
(6)),/4 -22.2037 -22.172 -38.7664 -38.715 —43.9586 —43.908
() /4 -2.37889 —2.4029 -3.57683 -3.7194 ~3.76553 -3.9285
(1), /4 ~5.36963 —5.3411 ~4.35478 —4.3641 —4.07177 -4.0959
)i/ 4 -1.99538 -1.9826 —3.24658 —3.2675 —3.49443 -3.5154

a

hi/c=0.1,hy/c = 0.8, all other notations are the same as those given in Table 2.
> Exact solutions given by Srinivas and Rao (1970).

the SSSS boundary conditions. However, all the numerical solutions converged to at least three significant
figures at the grid size 11 x 11 x 7, for each layer element. To examine the effects of the relative thickness
ratio ¢/a on the convergence of the numerical results, the SSSS laminated plate is analyzed again. The
numerical results solved by the present method for different relative thickness ratios are given in Table 5.
No significant effects of the relative thickness ratio on the convergence rate have been observed.

To examine the accuracy of the proposed solution methodology, the comparison studies are carried out
in Table 6. This comparison is done with the three-dimensional benchmark solutions given by Srinivas and
Rao (1970) for the simply supported boundary conditions with different relative thickness ratio and various
modular ratios. As seen, the converged DQEM solution shows excellent agreement with the exact solutions.
The reliability of present solutions has therefore been confirmed.

Based on the above convergence and comparison studies, the DQEM can now be safely employed to
predict the deflection and stress values at any given locations of the laminated plate. To ensure the accuracy
of the numerical solutions, the grid size for each layer element is set to 11 x 11 x 7. The numerical results
computed for a three-ply laminate with SSSS, SCSC and CCCC boundary conditions using the DQEM
have been tabulated in Tables 7-9. The effects of the relative thickness ratio ¢/a and modular ratio C},/C},
between plies are presented.

It is evident from Tables 7-9 that both the relative thickness ratio ¢/a and the modular ratio C},/C},
between plies of laminate bear significant influences on the values of the central deflection and the stresses
on plate. In general, the central deflection and all the in-plane and transverse shear stresses decrease
markedly as the relative thickness ratio ¢/a increases from 0.1 to 0.3. This is attributed to the effects of shear
deformation. As the modular ratio C},/C3, between the plies of laminate increases, the central deflection
decreases greatly. However, the stresses exhibit a different fashion, i.e. the in-plane stresses on the plate,
o, and o), at the center of the top and bottom surfaces of the plate increases and the transverse shear stress
7, at the mid-point of side face x =0 decreases with the modular ratio C},/C},, whereas the variations of
the in-plane and transverse shear stresses at the interfaces of laminate with the modular ratio C},/C3, are
different for different boundary conditions and different relative thickness ratios. It is also observed that the
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in-plane stresses, o, and o,, at the interfaces of laminate, are discontinuous and the values of the stress
differences between two interfacial materials at the same locations on the plate increase as the value of
modular ratio C},/Cj, increases. The distributions of the in-plane and transverse shear stresses across the
thickness at the center of a cross-ply square laminated plate (0°/90°/0°) with SSSS, SCSC and CCCC
boundary conditions are depicted in Figs. 2-4. It is evident that the transverse shear stresses are continuous

whereas the values of the in-plane stresses have a sharp jump at the interfaces of laminate.

0.100 0.100 0.100 W
0.075 % 0.075 k 0.075
. { . [
N 0050 & ﬁ 0.050 N 0.050 &
0.025 } 0.025 X 0.025 M
0.000 ' 0.000 <>
- 0.000
-80 -40 0 40 40 20 0 -5 4 3 2 1 0
ox/q o,/q To/q
(a) (b) ©)

Fig. 2. (a,b) Distributions of in-plane normal stresses ¢, and g, across the thickness at the center of a simply supported cross-ply
square laminated plate (0°/90°/0°); (c) distribution of transverse shear stress 7., across the thickness at the middle part of the side face

x=0.
0.100 0.100 0.100 /o,o-—o—'-"’"
0.075 { 0.075 { 0.075 /
< \ s X S 0.050
N 0050 X N 0.050 {— X N &
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(@) (b) ©)

Fig. 3. (a,b) Distributions of in-plane normal stresses ¢, and o, across the thickness at the center of a SCSC cross-ply square laminated
plate (0°/90°/0°); (c) distribution of transverse shear stress t,, across the thickness at the middle part of the side face x=0.
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0.100

0.100

0.075 X 0.075 i 0.075
§ 0050 & N 0.050 X § 0.050
0.025 +— 0.025 —— 0.025
— o ° —
0.000 ; . ; 0.000 , 0.000 e 3
-40 -20 0 20 40 -20 0 -15 -10 5 0
ox/q o,/q T /q
(a) (b) ©)

Fig. 4. (a,b) Distributions of in-plane normal stresses ¢, and o, across the thickness at the center of a fully clamped cross-ply square
laminated plate (0°/90°/0°); (c) distribution of transverse shear stress 7,, across the thickness at the middle part of the side face x =0.



F.-L. Liu | International Journal of Solids and Structures 37 (2000) 7671-7688 7687

5. Conclusion

In this article, the DQEM has been developed for the static analysis of three-dimensional laminated
plates by the integration of the domain decomposition technique with the DQ method. The reliability and
accuracy of the DQEM have been examined carefully through the convergence and comparison studies for
different boundary conditions. The example plates are then analyzed for different boundary conditions,
relative thickness ratios and modular ratios between plies of laminate using the developed DQEM, and the
detailed results have been presented and analyzed for deflections and stresses at different locations of plates.
It is found that the DQEM is capable of yielding accurate numerical results for the composite plates using a
relatively coarse mesh.

References

Bert, C.W., Jang, S.K., Striz, A.G., 1988. Two new approximate methods for analyzing free vibration of structural components. AIAA
J. 26, 612-618.

Bert, C.W., Jang, S.K., Striz, A.G., 1989. Nonlinear bending analysis of orthotropic rectangular plates by the method of differential
quadrature. Comput. Mech. 5, 217-226.

Bert, C.W., Malik, M., 1996. Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49 (1), 1-28.

Chen, W., Striz, A.G., Bert, C.W., 1997. A new approach to the differential quadrature method for fourth-order equations. Int. J.
Numer. Meth. Engng. 40 (11), 1941-1956.

Han, J.-B., Liew, K.M., 1996. The differential quadrature element method (DQEM) for axisymmetric bending of thick circular plates.
Proc. Int. Conf. Comput. Mech. vol. 3, Techno-Press, Seoul, pp. 2363-2368.

Hutchinson, J.R., Zillmer, S.D., 1983. Vibration of a free rectangular parallelepiped. Trans. ASME, J. Appl. Mech. 50, 123-130.

Leissa, A.W., Zhang, Z.D., 1983. On the three-dimensional vibrations of the cantilevered rectangular parallelepiped. J. Acoust. Soc.
America 73, 2013-2021.

Liew, K.M., Hung, K.C., Lim, M.K., 1993. A continuum three-dimensional vibration analysis of thick rectangular plates. Int. J. Solids
Struct. 30, 3357-3379.

Liew, K.M., Hung, K.C., Lim, M.K., 1994a. Three-dimensional vibration of rectangular plates: variance of simply supported
conditions and influence of in-plane inertia. Int. J. Solids Struct. 31, 3233-3247.

Liew, K.M., Hung, K.C., Lim, M.K., 1994b. Free vibration studies on stress-free three-dimensional elastic solids. Trans. ASME, J.
Appl. Mech. 61, 159-165.

Liew, K.M., Teo, T.M., 1998. Modeling via differential quadrature method: three-dimensional solutions for rectangular plates.
Comput. Meth. Appl. Mech. Engng. 159, 369-381.

Liew, K.M., Teo, T.M., 1999. Three-dimensional vibration analysis of rectangular plates based on differential quadrature method.
J. Sound Vib. 220, 577-599.

Liu, F.-L., 1999. Differential quadrature element method for static analysis of shear deformable cross-ply laminates. Int. J. Numer.
Meth. Engng. 46, 1203-1219.

Liu, F.-L., 2000. Rectangular plates on Winkler foundation: differential quadrature element solution. Int. J. Solids Struct. 37, 1743—
1763.

Liu, F.-L., Liew, K.M., Han, J.-B., 1997. Development of differential quadrature element method for vibration of Mindlin plates. Proc.
Seventh Int. Conf. Computing in Civil & Building Engng. vol. 2, Techno-Press, Seoul, pp. 1151-1156.

Liu, F.-L., Liew, K.M., 1998. Static analysis of Reissner-Mindlin plates by differential quadrature element method. Trans. ASME, J.
Appl. Mech. 65, 705-710.

Liu, F.-L., Liew, K.M., 1999a. Vibration analysis of discontinuous Mindlin plates by differential quadrature element method. Trans.
ASME, J. Vibr. Acoust. 121, 204-208.

Liu, F.-L., Liew, K.M., 1999b. Differential quadrature element method for static analysis of Reissner-Mindlin polar plates. Int. J.
Solids Struct. 36 (33), 5101-5123.

Liu, F.-L., Liew, K.M., 1999c. Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin
plates having discontinuities. Comput. Meth. Appl. Mech. Engng. 179 (3-4), 407-423.

Malik, M., Bert, C.W., 1998. Three-dimensional elasticity solutions for free vibration of thick rectangular plates by the differential
quadrature method. Int. J. Solids Struct. 35, 299-318.

Pagano, N.J., 1970. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Composite Mat. 5, 20-34.

Srinivas, S., Rao, A.K., 1970. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates.
Int. J. Solids Struct. 6, 1463-1481.



7688 F.-L. Liu | International Journal of Solids and Structures 37 (2000) 7671-7688

Srinivas, S., Rao, C.V., Rao, A.K., 1970. An exact analysis for vibration of simply supported homogeneous and laminated thick
rectangular plates. J. Sound Vibr. 12, 187-199.

Striz, A.G., Chen, W., Bert, C.W., 1994. Static analysis of structures by the quadrature element method (QEM). Int. J. Solids Struct.
31, 2807-2818.

Striz, A.G., Chen, W., Bert, C.W., 1997. Free vibration of high-accuracy plate elements by the quadrature element method. J. Sound
Vibr. 202, 689-702.

Teo, T.M., Liew, K.M., 1999. A differential quadrature procedure for three-dimensional buckling analysis of rectangular plates. Int. J.
Solids Struct. 36, 1149-1168.

Wang, X., Gu, H., 1997. Static analysis of frame structures by the differential quadrature element method. Int. J. Numer. Meth. Engng.
40, 759-772.

Wang, Y.-M., Tarn, J.-Q., 1994. Three-dimensional analysis of anisotropic inhomogeneous and laminated plates. Int. J. Solids Struct.
31, 497-515.

Wittrick, W.H., 1987. Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin’s
plate theory. Int. J. Solids Struct. 23, 441-464.



